SciPy 安装
本章节,我们使用 pip 工具来安装 SciPy 库,如果还未安装该工具,可以参考 Python pip 安装与使用。
升级 pip:
python3 -m pip install -U pip
安装 scipy 库:
python3 -m pip install -U scipy
安装完成后,我们就可以通过 from scipy import module 来导入 scipy 的库:
const……继续阅读 »
2年前 (2022-07-25) 107浏览 0评论
0个赞
Scipy 显著性检验
显著性检验(significance test)就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设(备择假设)是否合理,即判断总体的真实情况与原假设是否有显著性差异。或者说,显著性检验要判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致所引起的。 显著性检验是针对我们对总体所做的假设做检验,其原理就是……继续阅读 »
2年前 (2022-07-24) 219浏览 0评论
0个赞
SciPy 优化器
SciPy 的 optimize 模块提供了常用的最优化算法函数实现,我们可以直接调用这些函数完成我们的优化问题,比如查找函数的最小值或方程的根等。
NumPy 能够找到多项式和线性方程的根,但它无法找到非线性方程的根,如下所示:
x + cos(x)
因此我们可以使用 SciPy 的 optimze.root 函数,这个函数需要两个参数:
fun – 表示方程的函数。
x0……继续阅读 »
2年前 (2022-07-20) 99浏览 0评论
0个赞
SciPy 模块列表
以下列出了 SciPy 常用的一些模块及官网 API 地址:
模块名
功能
参考文档
scipy.cluster
向量量化
cluster API
scipy.constants
数学常量
constants API
scipy.fft
快速傅里叶变换
fft API
scipy.integrate
积分
integrate API
scipy.interpolat……继续阅读 »
2年前 (2022-07-01) 97浏览 0评论
0个赞
SciPy Matlab 数组
NumPy 提供了 Python 可读格式的数据保存方法。
SciPy 提供了与 Matlab 的交互的方法。
SciPy 的 scipy.io 模块提供了很多函数来处理 Matlab 的数组。
以 Matlab 格式导出数据
savemat() 方法可以导出 Matlab 格式的数据。
该方法参数有:
filename – 保存数据的文件名。
mdict –……继续阅读 »
2年前 (2022-06-16) 127浏览 0评论
0个赞
SciPy 教程
SciPy 是一个开源的 Python 算法库和数学工具包。
Scipy 是基于 Numpy 的科学计算库,用于数学、科学、工程学等领域,很多有一些高阶抽象和物理模型需要使用 Scipy。
SciPy 包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。
学习本教程前你需要了解
在开学习 SciPy 教程之前,我们需……继续阅读 »
2年前 (2022-06-15) 407浏览 0评论
0个赞
SciPy 图结构
图结构是算法学中最强大的框架之一。
图是各种关系的节点和边的集合,节点是与对象对应的顶点,边是对象之间的连接。
SciPy 提供了 scipy.sparse.csgraph 模块来处理图结构。
邻接矩阵
邻接矩阵(Adjacency Matrix)是表示顶点之间相邻关系的矩阵。
邻接矩阵逻辑结构分为两部分:V 和 E 集合,其中,V 是顶点,E 是边,边有时会有权重,表示节点之间的连接强度。
……继续阅读 »
3年前 (2022-06-04) 150浏览 0评论
0个赞
SciPy 空间数据
空间数据又称几何数据,它用来表示物体的位置、形态、大小分布等各方面的信息,比如坐标上的点。
SciPy 通过 scipy.spatial 模块处理空间数据,比如判断一个点是否在边界内、计算给定点周围距离最近点以及给定距离内的所有点。
三角测量
三角测量在三角学与几何学上是一借由测量目标点与固定基准线的已知端点的角度,测量目标距离的方法。
多边形的三角测量是将多边形分成多个三角形,我们可以用这些……继续阅读 »
3年前 (2022-06-03) 200浏览 0评论
0个赞
SciPy 插值
什么是插值?
在数学的数值分析领域中,插值(英语:interpolation)是一种通过已知的、离散的数据点,在范围内推求新数据点的过程或方法。
简单来说插值是一种在给定的点之间生成点的方法。
例如:对于两个点 1 和 2,我们可以插值并找到点 1.33 和 1.66。
插值有很多用途,在机器学习中我们经常处理数据缺失的数据,插值通常可用于替换这些值。
这种填充值的方法称为插补。
除了插补,……继续阅读 »
3年前 (2022-05-28) 104浏览 0评论
0个赞